PHYSICAL REVIEW E VOLUME 58, NUMBER 4 OCTOBER 1998

Influence of the aspect ratio of a drop in the spreading process over a horizontal surface
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We study in this paper the influence of the aspect ratio of an axisymmetric drop on the spreading rate. For
very small values of aspect ratio, the spreading rate is proportional to the cube of the aspect ratio as stated by
Tanner's law. However, as the value of the aspect ratio increases, the proportionality constant shows a weak
dependence on the aspect ratio, first decreasing and then increasing after reaching a minimum. Due to the fact
that the aspect ratio of the drop decreases with time in the spreading drop, its influence decreases as time
increases[S1063-651X98)09109-0

PACS numbgs): 47.15.Gf, 47.55.Dz, 68.10.Cr

[. INTRODUCTION gibly small compared with the surface tension and viscous
terms. This is true if the Reynolds number associated with
In Ref. [1] we deduce a simple first-order differential the spreading velocity and drop thickness is much lower than
equation for the spreading evolution of a drop over or undethe inverse of the aspect ratio of the drop,=Reh/u
a horizontal surface. Both gravity as well the disjoining pres-<1/6 wherep is the fluid density. From the order of mag-
sure effects were considered. We assumed a fluid with aitude written lines above, we know that the fluid velocity is
positive spreading paramet&=ogg—og —0>0, where v~ o8 u, therefore the associated Reynolds number will be
osg, 0gL, ando are the solid-gas, solid-liquid, and liquid- Re~ 50K, where Oh is the well-known Ohnesorge num-
gas free energy per unit area, respectivetyis also called ber defined by O& u/+\/pRo. Thus, the lubrication approxi-
the surface tension. We show how the spreading velocitynation is still valid for values 06 such ass<OM’°. Typical
depends on the ratio of the van der Waals influence length tealues for silicon oils are [9] p~841 kg/n?, u
the actual drop size. Due to the changing drop size with time=~0.0225 kg/ms, andr~0.035 kg/é. With these values,
the spreading rate also changes with time, modifying thehe Ohnesorge number ranges from 0.415Rer10”% mto
drop size evolution. We also considered very thin drop0.0415 forR=10"2 m. Therefore, the lubrication approxi-
(very small aspect ratio of drop 5=h/R, whereh is the  mation is valid for§<0.7 for R=10"* m and §<0.3 for
thickness of the fluid drop and is its radiug, with a linear- R=10"2 m.
ized form of the surface tension pressure gradients. The main purpose of this paper is to extend the analysis in
Using very simple arguments and assuming a small dropl], considering the full term arising from the Young-
shape as a spherical cap, it is possible to derive a very simpleaplace equation for the surface tension in order to evaluate
theory for the spreading procef3]. The pressure gradient the influence of a small but finite aspect ratio of the drop.
generated by surface tension must be balanced by the viscous

force, i.e.,,L_w/h2~crh/R3, where . is the viscosity of the Il. FORMULATION
fluid andv is the radial velocity of the fluid. It follows that
uvlo=Ca~ 6. For §<1, 5~ 6, whered is the angle of the Using the lubrication approximation, the nondimensional

surface profile and Ca is the usual capillary number. This igorm of the equation for the evolution of a free surface of a
the so-called Tanner’s lay8] written as§=CCa’®, where  fluid under gravity and capillary forces is given (]

C+ is the Tanner’s constant. Replacindy dR/dt andh by

V/CyR? whereV is the volume of the drop an@, a con- F\*d(¢G) G d¢ dF

stant of order unity, we obtain from Tanner's law a first- | G or E”%E

order ordinary differential equation fét(t), which gives the

well-known asymptotic behavioR~t10 for t—o. How- 19
ever, the constart is not universal and depends globally =T 7] %
on the specific problerfd—8§]. In most of the analyses on the
spreading process of small drops, the lubrication approximaw
tion has been employed, where the inertial terms are negli-
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hereD is a differential operator given by

D= P plan®+(Un)(apldm)[ 1+ 6*(apldn)?]
* Author to whom correspondence should be addressed. [1+ 82(a¢pl am)?]3?
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6= 6¢G/F with §,=H/R, representing the aspect ratio of do

the drop at timet=0, ¢ is the ratio of the van der Waals #(1)—0, ¢(0)—1= dz =0, @)
length a= \|A|/67ro to the size of the drops=gF/G?, 0

which is assumed to be very small compared with unity, withyggether with the result from matching with the precursor
go=aRy/H3 being its value at timé=0. B=pgR? o cor- region.
responds to the Bond number, which relates the gravity to

the surface tension forces. HeBes= BoF?2, with B, being the
corresponding value at tinte=0. A is the Hamaker constant,

which is negative for a wetting liquid. Here we used the At the edge of the drop, wherg is of ordere, there is a

B. Inner or precursor region [(1—»)~¢]

following nondimensional variables: very thin region with (X 5) ~ &, where the nonretarded van
der Waals forces cannot be neglected. Introducing for this
h r o Hg ) region the following inner variables of order unity,
¢ H(n' 7 R 7 3 RS @ K13 K23 1)
y= and x=———, (8)
whereH=H,G(7) andR=R,F(7) are the thickness at the 3% 312

center of the drop and the macroscopic radius of the drop, _ _ .
respectivelyH, andR, are the corresponding values at time the inner equation takes the nondimensional form
t=0. In a nondimensional form, the radial averaged velocity

!

is th
= e clyzy'"—y—z—lzcicz, 9

3#( ROF)3 5 d(D—B)¢ i y

= — v= _—

o \HG an where
At the macroscopic edge of the drop, the nondimensional 1
radial velocityK =K is therefore Cr=——, Co=2ay'(yy")?, a=(6KY3)?2,

3 d(D—B)¢ ety (10
=|=| 5—=1Iim ¢2—}, (4
G) dr pol an

Herey’'=dy/dx. In the precursor filmy—0 asx—~. To
the left, the boundary conditions are to be properly matched

where K is related to the usual capillary number by ) . .
with the macroscopic region.

=3Cals3, with Ca=v;ul/o. The total volume of the drop

that remains invariant during the spreading process is written
by Ill. RESULTS

1 We transform Eq(6) to a nonlinear equation given by
V=27R3H,F2GI with |=f ¢ndy. (5)
0 , d d?¢ldL?+ (1) dpldZ[ 1+ 6*2(dpldl)?]

— B*
To solve Eq(1) with the corresponding boundary and initial =~ d¢ [1+6%2(depldl)?]%? ¢
conditions, we divide the problem in a macroscofsorface _
tension—viscous-graviiyregion where¢/e>1, and a thin =4 (11)

region of orders close to the edge of the drop, {17)~«,
where the effect of the van der Waals forces must be consi
ered in the analysis. Due to the disparity in the two spatia
scales,e—0, the solution in both regions is to be obtained
and properly matched.

Jvhere =Ky, 5 is a reduced aspect ratio of the drop,
o = SKY4 andB* is a reduced Bond number given By
=B/KY2. The boundary conditions now take the form

0.50 T———rrrre—— T
0.45 1 -

A. Macroscopic region[(1— 5)> €]
: . . . 0.40
Assuming a quasisteady self-similar solution to the mac-

roscopic problem(where the effect of the van der Waals 0.35
forces can be neglectedb= ¢(7), from the overall volume 0.30 1
conservatior(5), it follows thatF°G=1 andeZerﬁHol . K 0.25]
In this case, the macroscopic equati@ reduces to 0.20
0.15
2d(D—B)¢>:K ©) —

d 7 7, 0.10 1 E

. _ _ 10-10 109 108 107 106 10 104
where the averaged radial velocity related to its value at the e

edge drop is found to increase linearly with the radial coor-
dinate, K,=K#. The nondimensional boundary conditions FIG. 1. Nondimensional spreading rafeas a function ot, for
needed to solve this equation are given by different values of the reduced aspect ratio of the dfdp
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FIG. 2. Nondimensional spreading rdfeas a function of the

reduced aspect ratio of the drap, for different values of. values of *. In Fig. 3 similar results are plotted for the

normalized spreading rat€/K, as a function of the aspect
¢>(K1’4)—>0, $(0)—1= d_¢ -0 (12) ratio of the dropé, for the two limiting values okt consid-
dgi, ered hereK, corresponds to the value obtained wiik0
[1],
together with the matching condition to the precursor region.
We integrate numerically Eq$11) and (12) using a fourth- Ko=K*[1+0.01991 Infe/e*)+0.008121 IR(s/£*)].
order Runge-Kutta equation with an initial guess of (13

2 2 i ; ;
d?¢/d¢?|o until we reach the precursor film with—0 as Here,K* () is a reference value. In our caé (10~

x—o. The appropriate solution is obtained as we get the e o . .
final condition in the precursor filmy—0 for x—. We =0.13963. In this figure it is clear that the universal behavior

used a step size af =101 for the macroscopic region represented by the similar minimum value KfK,, which

i 0.063;
andAx=10"* for the inner region. For simplicity, we do not suggests to introducé/e

instead ofé as shown in Fig. 4.
consider gravity effects here, included in Rf]. A very good correlation foK is given by

Figure 1 shows the reduced capillary numbér as a s 2
function of ¢, for different values of the reduced aspect ratio K=Ky(e)| 1-0.2167——+0.0829 ——| |. (14
5* . For very small values of*, the reduced spreading rate g0083 g0083

K is lower than that corresponding & = 0. However, there

is a value of8* around 0.25, where the above tendency For large values of6*, the macroscopic region of the
inverts, generating a minimum ol. For relatively large drop dictates the value d€ without taking care of the pre-
values of5*, the solution shows an asymptotic behavior for cursor layer structure. To study this effect, we plotted in Fig.
e—0 with constanK, not depending oa. The same results 5 the drop slope at the surface for different values of
are presented in Fig. 2, but witk plotted as a function of d?¢/d{?|o, around the value that producdg/d{=0 with

5%, for different values ofe. This figure clearly shows the ¢=0 and{={,, neglecting the disjoining pressure effects.
minimum of K and how the gap between the different valuesThe drop slopes are plotted as a function §f-()/¢, for

of ¢ is reduced as the value éf increases. Therefore, it is different values of5*. As the value of6* increasesd¢/d{
shown that the spreading rate does not depengd, éor large
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FIG. 5. Normalized macroscopic drop gradielt/d{ obtained
FIG. 3. Nondimensional spreading rdteas a function of the at the wall as a function of the reduced coordinate- ¢,)/{,, for
aspect ratio of the drop, for two different values ot. different values of the reduced aspect ratio of the dftp
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FIG. 6. Nondimensional spreading rdfeas a function of the
aspect ratio of the drop, for e=0. FIG. 8. Radius of a spreading drop of silicon oil as a function of

. . e time, for an initial volume of 0.024 cfand initial aspect ratio of
increases also very rapidly, thus indicating that the macrog _o 3,

scopic shape dictates the form that can be managed in the

precursor region to reach the appropriate conditien0 as
x— . Finally in Fig. 6 we show the asymptotic behavior of and
the nondimensional spreading rate as a functiod,dr &

=0, without considering the disjoining pressure effects. This

in fact is very similar to that obtained with=10"° in Fig.

3.

In summary, for values of6<1, the nondimensional
spreading rate or capillary number can be well represente,

by

Ca=Ky(e)8®

P s \?
1-0.2167 5o+ 0.0825( —3) 1

80'06

(19

Replacing Egs.(13) and (14) into the definition ofK,K
=F°dF/d7, we obtain the evolution equation for the drop creases the actual aspect ratio of the drop decreases, decreas-

radius as

where

dF
9~
F dr

Ko(g0) Q(F)A(F),

(16)

Q(F)=1+0.01991 IfF)+0.008121 IA(F)
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FIG. 7. Evolution of the nondimensional functiofdssandA as
a function of time.

measures the effect of changiagin the spreading process

0.0829% 1
88.126 F6.630

0.216%, 1
e 8.063 F 3.315

A(F)=1-

measures the effect of the aspect ratio of the drop. Equation
6) must be integrated numerically. For silicon oils, using
e data reported if@] for a drop with an initial volume of

0.024 cni and an initial aspect ratio of the dropy=0.3,

Eq. (16) is numerically integrated to give=RyF as a func-

tion of time, t=(3uRy/0dy) 7. The results are plotted in

Figs. 7 and 8. Figure 7 shows the values(bfand A as a

function of time. At the beginning, the actual aspect ratio of

the drop is relatively large and the influence ffis strong

compared with the influence aof. As the drop radius in-

ing its influence in the spreading process. Therefbre 1

for 7—oo. The influence of the aspect ratio is negligible for
times larger than 10's. The contrary occurs with the influ-
ence ofg, which increases always as the time increases. The
asymptotic behavior of the solution far— o« is therefore
almost the same as that without considering the aspect ratio
effects. The solution to Eq.16) is shown in Fig. 8. This
result is compared with the solution obtained by neglecting
any contribution of the aspect ratio of the drop and changing
values ofe, that is, withQQ=A=1, given by the classical
form

1/10

10K o 9,
_ 0[# a7

BMRO

Using the log-log plot in Fig. 8 it is difficult to show any big
difference between both curves. However, when plotting the
difference between them we see that Bd) underestimates
the solution for the drop radius on 4% at times around the
hour. The influence of the initial aspect ratio is negligible
small at large times.
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